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Abstract

We introduce three new families of reward-risk ratios, study their properties and compare
them to existing examples. All ratios in the three families are monotonic and quasi-concave,
which means that they prefer more to less and encourage diversification. Members of the
second family are also scale-invariant. The third family is a subset of the second one, and all
its members only depend on the distribution of a return. In the second part of the paper we
provide an overview of existing reward-risk ratios and discuss their properties. For instance,
we show that, like the Sharpe ratio, every reward-deviation ratio violates the monotonicity
property.
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1 Introduction

Reward-risk ratios (RRRs) are widely used as performance measures in financial decision making.
But not all of the existing examples have good structural properties. For instance, it is well
known that the Sharpe ratio is not monotonic; see e.g. Aumann and Serrano (2008). This can
lead to the situation that an investment is preferred to another one that has a higher return
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in every possible state of the world. In this paper we take the stance that every performance
measure should be at least monotonic and quasi-concave. Monotonicity means that more is
better than less. Quasi-concavity leads to preferences that value averages higher than extremes
and therefore encourages diversification. The Sharpe ratio, like many other existing reward-
risk ratios, is scale-invariant and only depends on the distribution of a return. Scale-invariance
sometimes simplifies computations, but it is not founded on decision theoretic principles. That a
performance measure only depends on the distribution of a return makes sense if the underlying
probability measure is known. But in many real-world situations, the probabilities of uncertain
events are not known exactly. Accordingly, many modern classes of preference relations do not
just depend on the distributions coming from a single probability measure; see e.g. Klibanoff et
al. (2005), Maccheroni et al. (2006), or Drapeau and Kupper (2013).

In this paper we introduce three families of reward-risk ratios with good structural properties
and compare them to examples from the literature. The first family consists of robust reward-risk
ratios that take into account expectations under different probability measures. All its members
are monotonic and quasi-concave, but not necessarily scale-invariant since their denominators
only depend on possible realizations of returns below a given threshold. In general they also do
not depend only on the distribution of a return under a single probability measure. The second
family is similar to the first one, but its members have positively homogeneous risk components.
As a consequence, all reward-risk ratios in the second family are monotonic, quasi-concave and
scale-invariant. The third family consists of ratios of distorted expectations. It is a subclass
of the second family, and all its members only depend on the distribution of a return. Some
examples from the literature are already contained in one of our three families. Others are not,
since they violate the monotonicity or quasi-concavity condition. We round the paper out by
providing an overview of the most common existing reward-risk ratios and a discussion of their
properties. In particular, we show that mean-deviation ratios, which contain the Sharpe ratio
as a special case, cannot be monotonic.

2 Definitions and preliminaries

Let X be a convex set of random variables on a probability space (Ω,F ,P) like, for instance,
the space of p-integrable random variables Lp for some 1 ≤ p < ∞, or all essentially bounded
random variables L∞. As usual, we identify two random variables if they agree P-almost surely
and understand inequalities between them in the P-almost sure sense. For example, X ≥ Y
means P[X ≥ Y ] = 1. By E we denote the expectation with respect to P. If we take expectation
under a different probability measure Q, we will write EQ.

An element X ∈ X is meant to be a general financial return over a time interval of length
T ∈ R+. For example, it can be of the form

VT ,
VT
V0
, VT − V0 or

VT − V0
V0

,

where V0 and VT are the initial and final value of an investment portfolio. Or more generally,
if B0 and BT are the initial and final value of a benchmark instrument, X could be any of the
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following:
VT
BT

,
VT
V0

B0

BT
, VT −BT , VT − V0 − (BT −B0),

VT − V0
BT −B0

,

VT −BT
BT

,
VT − V0
V0

− BT −B0

B0
,

VT − V0
V0

B0

BT −B0
.

The purpose of this paper is to study reward-risk ratios (RRR) of the form

α(X) =
θ(X)+

ρ(X)+
(2.1)

for a reward measure θ : X → R ∪ {±∞} and a risk measure ρ : X → R ∪ {±∞}. x+ denotes
the positive part max{x, 0}. Similarly, we denote by x− the negative part −min{x, 0} and by
x ∧ y the minimum of x and y. Moreover, 0/0 and ∞/∞ are both understood to be 0. Then
(2.1) is well-defined in all possible cases.

To be able to cover a wide range of examples, we do not make any formal requirements on
the functions θ and ρ. Instead, we directly focus on properties of the ratio α. Our main interest
is in RRRs that satisfy the following two conditions:

(M) Monotonicity α(X) ≥ α(Y ) for all X,Y ∈ X such that X ≥ Y
(Q) Quasi-concavity α(λX + (1−λ)Y ) ≥ α(X)∧α(Y ) for all X,Y ∈ X and λ ∈ R such that
0 ≤ λ ≤ 1.

Monotonicity is a minimal requirement that any performance measure should satisfy. It simply
means that more is better than less. If it is violated, there exist X ≤ Y with P[X < Y ] > 0
such that X is preferred to Y . Quasi-concavity describes uncertainty aversion; see for instance,
Schmeidler (1989), Cerreia-Vioglio et al. (2011), or Drapeau and Kupper (2013). If α has
this property, it prefers averages to extremes and encourages diversification. If not, there exist
X,Y ∈ X and a number λ ∈ (0, 1) such that α(λX + (1− λ)Y ) < α(X) ∧ α(Y ). This can lead
to concentration of risk, as is well-known from the study of Value-at-Risk; see e.g. Artzner et
al. (1999).

Many RRRs that exist in the literature also satisfy

(S) Scale-invariance α(λX) = α(X) for all X ∈ X and λ ∈ R+ \ {0} such that λX ∈ X
(D) Distribution-based α(X) only depends on the distribution of X under P.

If α satisfies (S), it does not depend on the size of X. This sometimes helps in numerical evalua-
tions, but there is no economic or decision theoretic reason why α should have this property. A
characterization of performance measures that are monotonic, quasi-concave and scale-invariant
was given by Cherny and Madan (2009). Property (D) is natural if there is good reason to
believe that P is the true underlying probability measure. A common approach in risk measure-
ment is to work with the empirical distribution coming from observed data; see e.g. Beutner
and Zähle (2010), Pflug and Wozabal (2010) or Belomestny and Krätschmer (2012). However,
in many financial applications, the probabilities of uncertain events are not known precisely. If,
for instance, the parameters in a model cannot be estimated with high accuracy, it might be
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better to take a robust approach and consider a whole family of distributions that the model
generates with different parameter values. In such a situation, it makes no sense to require that
α satisfies (D).

The following result gives sufficient conditions on the functions θ and ρ for α to fulfill (M),
(Q), (S) or (D).

Proposition 2.1 Let α be of the form (2.1).

1. If θ(X) ≥ θ(Y ) and ρ(X) ≤ ρ(Y ) for all X,Y ∈ X such that X ≥ Y , then α satisfies the
monotonicity property (M).

2. If θ is concave and ρ convex, then α satisfies the quasi-concavity property (Q).

3. If ρ(λX) = λρ(X) and θ(λX) = λθ(X) for all X ∈ X and λ ∈ R+\{0} such that λX ∈ X ,
then α satisfies the scale-invariance property (S).

4. If θ and ρ satisfy the distibution-based property (D), then so does α.

Proof. Statements 1, 3 and 4 are obvious. 2 is readily proved as follows: Let X,Y ∈ X and
λ ∈ (0, 1). If α(X)∧α(Y ) = 0, one has α(λX+(1−λ)Y ) ≥ 0 = α(X)∧α(Y ). If α(X)∧α(Y ) > 0,
then θ(X) ∧ θ(Y ) > 0. Concavity of θ and convexity of ρ give

θ(λX + (1− λ)Y ) ≥ λα(X)ρ(X)+ + (1− λ)α(Y )ρ(Y )+ ≥ (α(X) ∧ α(Y ))ρ(λX + (1− λ)Y )+.

2

3 Three general families of RRRs

In this section we introduce three general families of RRRs. All members of the first family satisfy
the monotonicity property (M) and the quasi-concavity property (Q), but are not necessarily
scale-invariant or distribution-based. Members of the second one fulfill (M), (Q), (S) and those
of the third one (M), (Q), (S), (D).

3.1 Robust RRRs

Let P and Q be two non-empty sets of probability measures that are absolutely continuous with
respect to P. Set

θ(X) = inf
Q∈P

EQ [X] and ρ(X) = sup
Q∈Q

(EQ
[
((m−X)+)p

]
)β/p

for m ∈ R, p, β ≥ 1, and choose the domain X so that all expectations are well-defined and finite.
This is always the case for X = L∞. But in many examples X can be taken to be larger. Then
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θ : X → R∪{−∞} is a concave function satisfying (M) and (S). Moreover, ρ : X → R+∪{+∞}
is convex and ρ(X) ≤ ρ(Y ) for X ≥ Y . So it follows from Proposition 2.1 that the robust RRR

α(X) =
infQ∈P EQ [X]+

supQ∈Q(EQ [((m−X)+)p])β/p
(3.1)

has the properties (M) and (Q). In the following special cases α has more structure:

a) If P = Q = {P}, then θ and ρ satisfy (D). So α fulfills (M), (Q), (D).

b) If m = 0 and β = 1, ρ satisfies ρ(λX) = λρ(X) for all X ∈ X and λ ∈ R+. Therefore, α
fulfills (M), (Q), (S).

In the intersection of a) and b) lies the Sortino–Satchell ratio E [X]+ / ‖X−‖p; see Sortino
and Satchell (2001). It satisfies all four properties (M), (Q), (S), (D). For p = 1 one obtains
the Gains-Loss ratio E [X]+ /E [X−] of Bernardo and Ledoit (2000). Class a) extends the
Sortino–Satchell ratio by generalizing the denominator. A general m ∈ R permits to shift the
reference level for outcomes of X, whereas a β > 1 generates a convex distortion of the risk
component.

Going beyond the class a) allows to introduce ambiguity through the sets P and Q. For
instance, the elements of P could describe the beliefs of different traders, and Q could consist
of different stress scenarios. Enlarging P and Q increases the ambiguity aversion and makes α
more conservative. A simple family of robust RRRs parametrized by P and Q is the following
subclass of b):

α(X) =
infQ∈P EQ [X]+

supQ∈Q EQ [X−]
. (3.2)

3.2 Robust expectations ratios

Note that members of the family (3.2) can be written in the form

α(X) =
infQ∈P EQ [X]+

supQ∈Q EQ [−X]+
(3.3)

by modifying the measures Q ∈ Q so that their support is in {X ≤ 0}. But since in (3.3) the
denominator can depend on the positive tail of X, (3.3) is more general than (3.2) and not fully
covered by the class of robust RRRs (3.1). Like all members of (3.2), RRRs of the form (3.3)
satisfy (M), (Q) and (S).

3.3 Distortion RRRs

We now discuss a subclass of (3.3) parametrized by two distortion functions. A distortion
function is a non-decreasing function ϕ : [0, 1] → [0, 1] satisfying ϕ(0) = 0 and ϕ(1) = 1. It
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induces the distorted probability Pϕ(A) := ϕ ◦ P [A], which can be used to define the distorted
expectation Eϕ as a Choquet integral:

Eϕ[X] :=

∫ ∞
0

Pϕ[X > t]dt+

∫ 0

−∞
(Pϕ[X > t]− 1)dt, X ∈ L∞.

It is well-known that Eϕ has the following properties:

(i) Eϕ[X] ≥ Eϕ[Y ] for X ≥ Y

(ii) Eϕ[λX] = λEϕ[X] for all λ ∈ R+

(iii) Eϕ[X +m] = Eϕ[X] +m for m ∈ R

(iv) Eϕ only depends on the distribution of X

(v) If ϕ is convex, then Eϕ is concave and

Eϕ[X] = inf
Q∈Pϕ

EQ [X] , where Pϕ := {Q� P : Q[A] ≤ Pϕ[A] for all A ∈ F}

(vi) If ϕ is concave, then Eϕ is convex and

Eϕ[X] = sup
Q∈Qϕ

EQ [X] , where Qϕ := {Q� P : Q[A] ≥ Pϕ[A] for all A ∈ F} ;

see e.g., Schmeidler (1985), Denneberg (1997) or Delbaen (2002).
If θ(X) = Eϕ[X] for a convex distortion function ϕ, ρ(X) = Eψ[−X] for a concave distortion

function ψ, and X ⊇ L∞ is chosen so that Eϕ[X], Eψ[−X] ∈ R for all X ∈ X , one obtains from
Proposition 2.1, that the distortion RRR

αϕ,ψ(X) =
Eϕ[X]+

Eψ[−X]+
, X ∈ X , (3.4)

has all four properties (M), (Q), (S), (D). It can be seen from (v) and (vi) that distortion RRRs
are contained in the class of robust expectations ratios (3.3).

For ϕ = id one obtains θ(X) = E [X]. Some popular choices of concave distortion functions
to describe risk from the literature are the following:

a) The proportional hazard transform (Wang, 1995)

ψ(x) = x1/γ for some γ ≥ 1,

which, via ρ(X) = Eψ[−X], leads to a risk assessment that inflates the probabilities of
large losses.

6



b) The Wang transform (Wang, 2000)

ψ(x) = Φ
[
Φ−1(x) + γ

]
for some γ ≥ 0,

where Φ is the standard normal cdf. Again, ψ inflates the probabilities of large losses. For
instance, if X is normally distributed with mean µ and standard deviation σ, Eψ[−X] is
equal to the expectation of −Y , where Y is normally distributed with mean µ − σγ and
standard deviation σ.

c) The MINVAR distortion function

ψ(x) = 1− (1− x)1+γ for some γ ≥ 0.

Cherny and Madan (2009) showed that in the case where γ is an integer, Eψ[−X] is equal to
the expectation of −Y , where Y = min {X1, . . . , Xγ+1} and X1, . . . , Xγ+1 are independent
copies of X.

d) The MINMAXVAR distortion function

ψ(x) = 1− (1− x1/(1+γ))1+γ for some γ ≥ 0.

It is shown in Cherny and Madan (2009) that for integer γ, Eψ[−X] is equal to the
expectation of −Y , where Y = min {Z1, . . . , Zγ+1} and Z1, . . . , Zγ+1 are independent
random variables such that max {Z1, . . . , Zγ+1} has the same distribution as X.

In addition, several of the examples of the next section can be written as distortion RRRs; see
Subsection 4.4 below. In particular, Value-at-Risk and Average-Value-at-Risk can be represented
as distortion risk measures. For further information on distortion risk measures in portfolio
optimization we refer to Sereda et al. (2010).

4 More examples

In this section we study properties of some reward-risk ratios from the literature and discuss
extensions.

4.1 Mean-deviation ratios

The archetypical RRR is the Sharpe ratio SR(X) := E [X]+ /σ(X) (Sharpe, 1966), where σ(X)
denotes the standard deviation σ(X) := ‖X − E [X]‖2. Generalizing the standard deviation,
Rockafellar et al. (2006) introduced the class of deviation measures as all functions D : L2 →
R+ ∪ {+∞} satisfying

(D1) D(X +m) = D(X) for all X ∈ L2 and m ∈ R

(D2) D(0) = 0, and D(λX) = λD(X) for all X ∈ L2 and all λ ∈ R+ \ {0}
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(D3) D(X + Y ) ≤ D(X) +D(Y ) for all X,Y ∈ L2

(D4) D(X) > 0 for all nonconstant X ∈ L2, and D(X) = 0 for contant X ∈ L2.

Every deviation measure D induces a Mean-Deviation ratio of the form αD := E [X]+ /D(X).
It follows from Proposition 2.1 that each mean-deviation ratio satisfies (Q) and (S). On the other
hand, one has the following:

Proposition 4.1 Fix p ∈ [1,∞] and let θ : Lp → R∪{±∞} be a function such that θ(X+m) =
θ(X)+m and θ(λX) = λθ(X) for all X ∈ Lp, m ∈ R and λ ∈ R+\{0}. If D : Lp → R+∪{+∞}
satisfies (D1)–(D2) and there exists a Z ∈ Lp such that Z ≥ 0, θ(Z) ∈ R+ and D(Z) ∈ R+ \{0},
then the corresponding RRR α(X) = θ(X)+/D(X) violates the monotonicity property (M).

Proof. Let Z ∈ Lp such that Z ≥ 0, θ(Z) ∈ R+ and D(Z) ∈ R+ \ {0}. Choose constants
a, b, c > 0 such that a > c, b ≥ 1 and bc > a. Define X = a+ bZ and Y = c+ Z. Then X > Y ,
and at the same time,

α(X) =
a

b

1

D(Z)
+ α(Z) <

c+ θ(Z)

D(Z)
= α(Y ).

This shows that α violates (M). 2

As a special case of Proposition 4.1 one obtains that mean-deviation ratios do not satisfy
the monotonicity property (M).

Corollary 4.2 Fix p ∈ [1,∞] and let D : Lp → R+ ∪ {+∞} be a function with the properties
(D1)–(D2). If there exists a Z ∈ Lp such that Z ≥ 0 and D(Z) ∈ R+ \ {0}, then the ratio
E [X]+ /D(X) violates the monotonicity condition (M).

One can modify the Sharpe ratio by replacing the standard deviation by a p-deviation
σp(X) := ‖E [X]−X‖p or a p-semi-deviation σ−p (X) := ‖(E [X]−X)+‖p, p ≥ 1. By Proposition

2.1, the Mean-p-Deviation ratio E [X]+ /σp(X) as well as the Mean-p-Semi-Deviation ra-
tio E [X]+ /σ−p (X) fulfill (Q), (S), (D). However, since σp and σ−p satisfy (D1)–(D4), one obtains
from Corollary 4.2 that both ratios violate the monotonicity condition (M). Special cases are
the Mean-Standard-Semi-Deviation ratio E [X]+ / ‖(X − E [X])+‖2 (see Martin and Mc-
Cann, 1989), the Mean-Absolute-Deviation ratio E [X]+ /E [|X − E [X] |] (see Konno and
Yamazaki, 1991) and the Mean-Absolute-Semi-Devation ratio E [X]+ /E [(X − E [X])+].
Further variations of the Sharpe ratio include the Skewness Adjusted Sharpe ratio

SASRb(X) := SR(X)

√√√√1 +
b

3
E

[(
X − E[X]

σ(X)

)3
]
,

the Adjusted for Skewness Sharpe ratio

ASSRb(X) := SR(X)

√√√√1 +
b

3
E

[(
X − E[X]

σ(X)

)3
]

SR(X)
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(see Zakamouline and Koekebakker, 2008), and the Black–Treynor ratio

BTR(X) =
E[X]+

Cov(X,B)+/Var(B)

for a benchmark instrument B (see Treynor and Black, 1973). It follows from Proposition 4.1
that SASR and BTR do not satisfy the monotonicity condition (M). ASSR does not exactly
fulfill the assumptions of Proposition 4.1. But it can be shown that it violates (M) as well.
SASR and ASSR satisfy (S) and (D), but both violate (Q). Indeed, if (X,Y ) is a pair of random
variables with distribution

(X,Y ) =


(4, 2) with probability 0.5

(−1, 4) with probability 0.4
(−2,−4) with probability 0.1

,

one has SASR1(X) ≈ 0.53, SASR1(Y ) ≈ 0.60, but

SASR1(0.3X + 0.7Y ) ≈ 0.37 < 0.53 ≈ min{SASR1(X),SASR1(Y )}.

The same example also shows that ASSR does not satisfy (Q). By Proposition 2.1, BTR satisfies
(Q) and (S). However, since it depends on the joint distribution of X and B, it does in general
not fulfill (D).

4.2 Mean-Risk ratios with monetary risk measures

A mapping ρ : Lp → (−∞,∞] is a monetary risk measure if it has the properties (R1)–(R2)
below. If it satisfies (R1)–(R3), it is called a convex risk measure. If it fulfills (R1)–(R4), it is a
coherent risk measure; see Artzner et al. (1999) and Föllmer and Schied (2004).

(R1) ρ(X) ≥ ρ(Y ) for X ≤ Y ,

(R2) ρ(X +m) = ρ(X)−m for all X ∈ X and m ∈ R,

(R3) ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for all X,Y ∈ X and λ(0, 1),

(R4) ρ(λX) = λρ(X) for all X ∈ X and λ ∈ R+.

4.2.1 Value-at-Risk ratio

The Value-at-Risk ratio of Favre and Galeano (2002) (also called RoVaR) is given by

VaRRγ(X) :=
E [X]+

VaRγ(X)+
,

where VaRγ(X) = inf {m ∈ R : P[X +m < 0] ≤ γ} is the Value-at-Risk at the level γ ∈ (0, 1).
It is well-known that VaRγ satisfies (D), (R1), (R2), (R4) but not (R3); see e.g. Artzner
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et al. (1999). It follows that VaRRγ fulfills (M), (S), (D). But it violates the quasi-concavity
property (Q). This can be seen by considering two i.i.d. random variables X,Y with distribution

X =


−30 with probability 0.03
−10 with probability 0.03

5 with probability 0.94
.

Then E [X] = E [Y ] = 3.5, and for γ = 0.05, VaRγ(X) = VaRγ(Y ) = 10, VaRγ(X + Y ) = 25.
Since VaRRγ is scale-invariant, one has

VaRRγ

(
X + Y

2

)
= VaRRγ(X + Y ) =

7

25
<

7

20
= VaRRγ(X) ∧VaRRγ(Y ),

which shows that VaRRγ is not quasi-concave.

4.2.2 Mean-Risk ratios with convex risk measures

A mean-risk ratio with a convex risk measure ρ in the denominator that is not coherent satisfies
(M) and (Q) but not (S). For instance, if ρ is an entropic risk measure γ−1 logE[exp(−γX)] for
a constant γ > 0, one obtains the Mean-Entropic ratio

MERγ(X) :=
γE[X]+

logE[exp(−γX)]+
.

More generally, if ρ is a distortion-exponential risk measure γ−1 logEψ[exp(−γX)] for a constant
γ > 0 and a concave distortion function ψ (see Tsanakas, 2009), one gets the Mean-Distortion-
Entropic ratio

MDERγ,ψ(X) :=
γE[X]+

logEψ[exp(−γX)]+
.

4.2.3 Mean-Risk ratios with coherent risk measures

If ρ is a coherent risk measure, the mean-risk ratio E [X]+ /ρ(X)+ satisfies (M), (Q), (S). The
following examples are from the literature. They all satisfy (D).

The Stable Tail Adjusted Return ratio (see Martin et al., 2003) is given by

STARRγ(X) :=
E [X]+

AVaRγ(X)+
,

where AVaRγ(X) := γ−1
∫ γ
0 VaRu(X)du is the Average-Value-at-Risk at the level γ ∈ (0, 1].

Since AVaRγ dominates VaRγ , STARRγ is below VaRRγ .
The MiniMax ratio (see Young, 1998) is defined as

MMR(X) :=
E [X]+

‖X−‖∞
.
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The Gini ratio (see Shalit and Yitzhaki, 1994) is

GRγ(X) :=
E [X]+

(ΓX(γ)− E [X])+
,

where ΓX(γ) := E [X] − γ
∫ 1
0 (1 − u)γ−1F−1X (u)du. As mentioned in Ortobelli et al. (2006),

ΓX(γ)− E [X] is a coherent risk measure for every γ > 1.

4.3 More non-quasi-concave reward-risk ratios

The Farinelli–Tibiletti ratio (Farinelli and Tibiletti, 2008) is given by

FTR(X) :=
‖(X −m)+‖p
‖(n−X)+‖q

,

where m,n ∈ R and p, q > 0. In general it only satisfies (M) and (D). If m = n = 0 it also fulfills
(S), but since the numerator is not concave, it violates (Q). Indeed, consider a pair of random
variables (X,Y ) with distribution

(X,Y ) =


(−10, 1) with probability 0.5

(1, 3) with probability 0.2
(2,−6) with probability 0.3

and set m = n = p = q = 1. Then FTR(X) = 3/55, FTR(Y ) = 4/21 and for λ = 3/4, one has

FTR(λX + (1− λ)Y ) =
4

177
<

3

55
= FTR(X) ∧ FTR(Y ).

The Skewness-Kurtosis ratio (Watanabe, 2006) is given by

SKR(X) =
E
[
φ(X)3

]+
E [φ(X)4]

for φ(X) =
X − E[X]

σ(X)
.

It obviously satisfies (S) and (D). But it violates (M) and (Q), which can be seen from the
following two examples: First, assume that

(X,Y ) =


(3, 1) with probability 0.25
(2, 0) with probability 0.5
(1, 0) with probability 0.25

.

Then X > Y . But SKR(X) = 0 < SKR(Y ) = 2
√

3/7, which shows that (M) is violated.
Furthermore, if

(X,Y ) =


(−10, 1) with probability 0.5

(1, 3) with probability 0.2
(2,−1) with probability 0.3

,
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then SKR(X) ≈ 0.0104 < 0.0686 ≈ SKR(Y ), and for λ = 0.7 one has SKR(λX + (1 − λ)Y ) ≈
0.0056 < 0.0104 ≈ SKR(X) ∧ SKR(Y ). So SKR does not satisfy (Q).

The Rachev ratio and the Generalized Rachev ratio (Biglova et al., 2004) are given by

RR(β,γ)(X) :=
AVaRβ(−X)

AVaRγ(X)
and GRR(β,γ,δ,ε)(X) :=

AVaR(β,γ)(−X)

AVaR(δ,ε)(X)

for AVaR(β,γ)(X) := β−1
∫ β
0 [max(−F−1X (u), 0)]γdu. A variant of GRR is the Modified Gener-

alized Rachev ratio (Stoyanov et al., 2007)

MGRR(β,γ,δ,ε)(X) :=
AVaR(β,γ)(−X)1/γ

AVaR(δ,ε)(X)1/ε
. (4.1)

While RR and MGRR fulfill (M), (S) and (D), GRR only satisfies (M) and (D). Moreover,
all three ratios have a non-concave numerator and therefore violate (Q). For instance, consider
α = RR(β,γ) with β = γ = 0.05. It is well-known that AVaRβ(X) is equal to β−1E[(q−X)+]−q,
where q is a β-quantile of X; see Föllmer and Schied (2004). So if the pair (X,Y ) is distributed
like

(X,Y ) =


(−500,−1000) with probability 0.02

(4,−5) with probability 0.03
(1, 6) with probability 0.95

,

one obtains α(X) = 14/997 and α(Y ) = 6/403. On the other hand,

RR(β,γ)

(
X + Y

2

)
= RR(β,γ)(X + Y ) =

5

429
<

14

997
= RR(β,γ)(X) ∧RR(β,γ)(Y ),

which shows that RR, GRR and MGRR all violate (Q).

4.4 Representation as distortion RRR

Several of the RRRs in Section 4 can be written as distortion RRRs. As observed in Section
3, the mean can be expressed as Eϕ for ϕ = id. Furthermore, one can represent VaRγ(X) as
Eψγ [−X] for

ψγ(x) =

{
0 if 0 ≤ x < γ

1 if γ ≤ x ≤ 1
,

AVaRγ(X) as Eψγ [−X] for

ψγ(x) =

{
x/γ if 0 ≤ x ≤ γ
1 if γ ≤ x ≤ 1

, (4.2)

and the Gini-measure ΓX(γ)− E [X] as Eψγ [−X] for

ψγ(x) = (1− x)γ , γ > 1.
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The modified generalized Rachev ratio (4.1) can be represented as

MGRR(β,γ,δ,ε)(X) =
Eψβ [(X+)γ ]

1
γ

Eψδ [((−X)+)ε]
1
ε

,

with ψβ and ψδ as in (4.2).

4.5 Summary of properties

The following table lists properties of the RRRs discussed in this paper.

Ratio (M) (Q) (S) (D)

Robust RRR x x

Robust Expectations Ratio x x x

Distortion RRR x x x x

Sortino–Satchel ratio x x x x

Gains-Loss ratio x x x x

Mean-Deviation ratio x x

Sharpe ratio x x x

Mean-p-Deviation ratio x x x

Mean-p-Semi-Deviation ratio x x x

Skewness Adjusted Sharpe ratio x x

Adjusted for Skewness Sharpe ratio x x

Black–Treynor ratio x x

Value-at-Risk ratio x x x

Mean-Risk ratio with a convex risk measure x x

Mean-Entropic ratio x x x

Mean-Distortion-Entropic ratio x x x

Mean-Risk ratio with a coherent risk measure x x x

STAR ratio x x x x

MiniMax ratio x x x x

Gini ratio x x x x

Farinelli–Tibiletti ratio x x x

Skewness-Kurtosis ratio x x

Rachev ratio x x x

Generalized Rachev ratio x x

Modified Generalized Rachev ratio x x x

Table 1: Properties of reward-risk ratios
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[14] H. Föllmer and A. Schied (2004). Stochastic Finance. An Introduction in Discrete Time.
2nd Edition. de Gruyter Studies in Mathematics 27.

[15] P. Klibanoff, M. Marinacci and S. Mukerji (2005). A smooth model of decision making
under ambiguity. Econometrica 73(6), 1849–1892.

14



[16] H. Konno and H. Yamazaki (1991). Mean-absolute deviation portfolio optimization model
and its applications to Tokyo stock market. Management Science 37, 519–531.

[17] F. Maccheroni, M. Marinacci and A. Rustichini (2006). Ambiguity aversion, robustness,
and the variational representation of preferences. Econometrica 74(6), 1447–1498.

[18] P. Martin and B. McCann (1989). The Investors Guide To Fidelity Funds: Winning Strate-
gies For Mutual Fund Investors. John Wiley & Sons.

[19] R.D. Martin, S. Rachev and F. Siboulet (2003). Phi-alpha optimal portfolios and extreme
risk management. Wilmott, 70-83.

[20] S. Ortobelli, S. Rachev, H. Shalit and F. Fabozzi. (2008). Orderings and risk probability
functionals in portfolio theory. Probability and Mathematical Statistics 28(2), 203–234.

[21] G. Pflug and N. Wozabal (2010). Asymptotic distribution of law-invariant risk functionals.
Finance and Stochastics 14, 397–418.

[22] R.T. Rockafellar, S. Uryasev and M. Zabarankin (2006). Generalized deviations in risk
analysis. Finance and Stochastics 10, 51–74.

[23] D. Schmeidler (1985). Integral representation without additivity. Proceedings of the Amer-
ican Mathematical Society 97 (2), 255–261.

[24] D. Schmeidler (1989). Subjective probability and expected utility without additivity.
Econometrica 57, 571–587.

[25] E.N. Sereda, E.M. Bronshtein, S.T. Rachev, F.J. Fabozzi, W. Sun and S.V. Stoyanov
(2010). Distortion risk measures in portfolio optimization. Handbook of Portfolio Con-
struction, Springer US, 649–673.

[26] H. Shalit and S. Yitzhaki (1994). Mean-Gini, portfolio theory, and the pricing of risky
assets. The Journal of Finance 39(5), 1449–1468.

[27] W.F. Sharpe (1966). Mutual fund performance. The Journal of Business 39, 119–138.

[28] F.A. Sortino and S. Satchell (2001). Managing Downside Risk in Financial Markets.
Butterworth–Heinemann.

[29] S. Stoyanov, S. Rachev, F. Fabozzi (2007). Optimal financial portfolios. Applied Mathe-
matical Finance 14(5), 401–436.

[30] J.L. Treynor and F. Black (1973). How to use security analysis to improve portfolio selec-
tion. Journal of Business 46(1), 131–136.

[31] A. Tsanakas (2009). To split or not to split: capital allocation with convex risk measures.
Insurance: Mathematics and Economics 44, 268–277.

15



[32] S.S. Wang (1995). Insurance pricing and increased limits ratemaking by proportional haz-
ards transforms. Insurance: Mathematics and Economics 17, 43–54.

[33] S.S. Wang (2000). A class of distortion operators for pricing financial and insurance risks.
The Journal of Risk and Insurance 67, 15–36.

[34] Y. Watanabe (2006). Is Sharpe ratio still effective? Journal of Performance Measurement,
11(1), 55–66.

[35] M.R. Young (1998). A minimax portfolio selection rule with linear programming solution.
Management Science 44, 673–683.

[36] V. Zakamouline and S. Koekebakker (2008). Portfolio performance evaluation with gen-
eralized Sharpe ratios: beyond the mean and variance. Journal of Banking and Finance
33(7), 1242–1254.

16


